Expression Analysis of Lrrk1, Lrrk2 and Lrrk2 Splice Variants in Mice
نویسندگان
چکیده
Missense mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are linked to autosomal dominant forms of Parkinson's disease (PD). In order to get insights into the physiological role of Lrrk2, we examined the distribution of Lrrk2 mRNA and different splice variants in the developing murine embryo and the adult brain of Mus musculus. To analyse if the Lrrk2-paralog, Lrrk1, may have redundant functions in PD-development, we also compared Lrrk1 and Lrrk2 expression in the same tissues. Using radioactive in situ hybridization, we found ubiquitous expression of both genes at low level from embryonic stage E9.5 onward, which progressively increased up until birth. The developing central nervous system (CNS) displayed no prominent Lrrk2 mRNA signals at these time-points. However, in the entire postnatal brain Lrrk2 became detectable, showing strongest level in the striatum and the cortex of adult mice; Lrrk1 was only detectable in the mitral cell layer of the olfactory bulb. Thus, due to the non-overlapping expression patterns, a redundant function of Lrrk2 and Lrrk1 in the pathogenesis of PD seems to be unlikely. Quantification of Lrrk2 mRNA and protein level in several brain regions by real-time PCR and Western blot verified the striatum and cortex as hotspots of postnatal Lrrk2 expression. Strong expression of Lrrk2 is mainly found in neurons, specifically in the dopamine receptor 1 (DRD1a) and 2 (DRD2)-positive subpopulations of the striatal medium spiny neurons. Finally, we identified 2 new splice-variants of Lrrk2 in RNA-samples from various adult brain regions and organs: a variant with a skipped exon 5 and a truncated variant terminating in an alternative exon 42a. In order to identify the origin of these two splice variants, we also analysed primary neural cultures independently and found cell-specific expression patterns for these variants in microglia and astrocytes.
منابع مشابه
Biochemical Characterization of Highly Purified Leucine-Rich Repeat Kinases 1 and 2 Demonstrates Formation of Homodimers
Leucine-rich repeat kinase 1 and 2 (LRRK1 and LRRK2) are large multidomain proteins containing kinase, GTPase and multiple protein-protein interaction domains, but only mutations in LRRK2 are linked to familial Parkinson's disease (PD). Independent studies suggest that LRRK2 exists in the cell as a complex compatible with the size of a dimer. However, whether this complex is truly a homodimer o...
متن کاملHuman leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions?
Mutations in LRRK2 (leucine-rich repeat kinase 2) are associated with both familial and sporadic PD (Parkinson's disease). LRRK1 (leucine-rich repeat kinase 1) shares a similar domain structure with LRRK2, but it is not linked to PD. LRRK proteins belong to a gene family known as ROCO, which codes for large proteins with several domains. All ROCO proteins have a ROC (Ras of complex proteins) GT...
متن کاملEndogenous Leucine-Rich Repeat Kinase 2 Slows Synaptic Vesicle Recycling in Striatal Neurons
Dominant mutations in leucine-rich repeat kinase 2 (LRRK2) produce the most common inherited form of Parkinson's disease (PD) but the function of LRRK2 remains poorly understood. The presynaptic role of multiple genes linked to PD including α-synuclein (α-syn) has suggested that LRRK2 may also influence neurotransmitter release, a possibility supported by recent work. However, the use of diseas...
متن کاملLRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson’s disease, but the precise physiological function of the protein remains ill-defined. Recently, our group proposed a model in which LRRK2 kinase activity is part of an EndoA phosphorylation cycle that facilitates efficient vesicle formation at synapses in the Drosophila melanogaster neuromuscular junctions.Flies har...
متن کاملThe Parkinson disease gene LRRK2: evolutionary and structural insights.
Mutations in the human leucine-rich repeat kinase 2 (LRRK2) gene are associated with both familial and sporadic Parkinson disease (PD). LRRK2 belongs to a gene family known as Roco. Roco genes encode for large proteins with several protein domains. Particularly, all Roco proteins have a characteristic GTPase domain, named Roc, plus a domain of unknown function called COR. In addition, LRRK2 and...
متن کامل